627 research outputs found

    Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Get PDF
    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI

    Comparison between three-dimensional linear and nonlinear tsunami generation models

    Get PDF
    The modeling of tsunami generation is an essential phase in understanding tsunamis. For tsunamis generated by underwater earthquakes, it involves the modeling of the sea bottom motion as well as the resulting motion of the water above it. A comparison between various models for three-dimensional water motion, ranging from linear theory to fully nonlinear theory, is performed. It is found that for most events the linear theory is sufficient. However, in some cases, more sophisticated theories are needed. Moreover, it is shown that the passive approach in which the seafloor deformation is simply translated to the ocean surface is not always equivalent to the active approach in which the bottom motion is taken into account, even if the deformation is supposed to be instantaneous.Comment: 39 pages, 16 figures; Accepted to Theoretical and Computational Fluid Dynamics. Several references have been adde

    Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation

    Get PDF
    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Measurement of Hadron and Lepton-Pair Production at 130GeV < \sqrt{s} < 189 GeV at LEP

    Full text link
    We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions

    Study protocol for the management of impacted maxillary central incisors: a multicentre randomised clinical trial: the iMAC Trial

    Get PDF
    Background Failure of eruption of the maxillary permanent incisor teeth usually presents in the mixed dentition between the ages of 7 and 9 years. Missing and unerupted maxillary incisors can be regarded as unattractive and have a potentially negative impact on facial and dental aesthetics. The presence of a supernumerary tooth (or odontoma) is commonly responsible for failed eruption or impaction of the permanent maxillary incisors. The primary objective of this trial is to investigate the success of eruption associated with maxillary incisor teeth that have failed to erupt because of a supernumerary tooth in the anterior maxilla. Methods This protocol describes an interventional multicentre two-arm randomised clinical trial. Participants meeting the eligibility criteria will be randomised (unrestricted equal participant allocation [1:1]) to either space creation with an orthodontic appliance, removal of the supernumerary tooth and application of direct orthodontic traction or space creation with an orthodontic appliance, removal of the supernumerary tooth and monitoring. The primary outcome of this trial is to determine the prevalence of successfully erupted maxillary central permanent incisors at 6 months following removal of the supernumerary tooth. Secondary outcome measures include (1) the effect of initial tooth position (assessed radiographically) on time taken for the tooth to erupt, (2) time taken to align the unerupted tooth to the correct occlusal position, (3) gingival aesthetics and (4) changes in the self-reported Oral Health Related-Quality of Life (OHRQoL) (pre-and post-treatment). Discussion There is a lack of high-quality robust prospective studies comparing the effectiveness of interventions to manage this condition. Furthermore, the UK national clinical guidelines have highlighted a lack of definitive treatment protocols for the management of children who present with an unerupted maxillary incisor due to the presence of a supernumerary tooth. The results of this trial will inform future treatment guidelines for the management of this condition in young children

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore